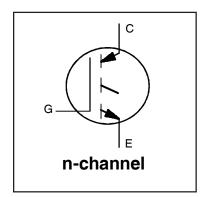
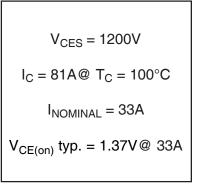
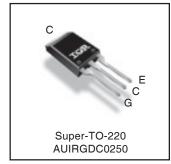
International TOR Rectifier

AUIRGDC0250

Features


- Low V_{CE (on)} Planar IGBT Technology
- Low Switching Losses
- Square RBSOA
- 100% of The Parts Tested for $I_{LM} \ensuremath{\mathbb{O}}$
- Positive V_{CE (on)} Temperature Coefficient.
- Lead-Free, RoHS Compliant
- Automotive Qualified *


Benefits


- Device optimized for soft switching applications
- High Efficiency due to Low V_{CE(on)}, low switching losses
- · Rugged transient performance for increased reliability
- Excellent current sharing in parallel operation
- Low EMI

- PTC Heater
- Relay Replacement

G	С	E
Gate	Collector	Emitter

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	1200	V
I _C @ T _C = 25°C	Continuous Collector Current	141⑤	
I _C @ T _C = 100°C	Continuous Collector Current	81	
I _{NOMINAL}	Nominal Current	33	Α
I _{CM}	Pulse Collector Current, V _{GE} = 15V ②	99	
I _{LM}	Clamped Inductive Load Current, V _{GE} = 20V ①	99	
V_{GE}	Continuous Gate-to-Emitter Voltage	±20	V
	Transient Gate-to-Emitter Voltage	±30	v
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	543	_ w
P _D @ T _C = 100°C	Maximum Power Dissipation	217	
T_{J}	Operating Junction and	-55 to +150	
T _{STG} Storage Temperature Range		-55 to +150	°C
	Soldering Temperature, for 10 sec. (1.6mm from case)	300	
_	Mounting Torque, 6-32 or M3 Screw	10 lbf·in (1.1N·m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
R _{eJC} (IGBT)	Thermal Resistance Junction-to-Case (IGBT)⊕			0.23	
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink (flat, greased surface)		0.50		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62		

^{*}Qualification standards can be found at http://www.irf.com/

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200	_		٧	$V_{GE} = 0V, I_C = 100\mu A$ ③
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	1.2	_	V/°C	V _{GE} = 0V, I _C = 1mA (25°C-150°C)③
		_	1.37	1.57	V	$I_C = 33A$, $V_{GE} = 15V$, $T_J = 25^{\circ}C$
$V_{CE(on)}$	Collector-to-Emitter Saturation Voltage	_	1.45	_	V	$I_C = 33A$, $V_{GE} = 15V$, $T_J = 150$ °C
$V_{GE(th)}$	Gate Threshold Voltage	3.0	_	6.0	٧	$V_{CE} = V_{GE}$, $I_C = 1mA$
$\Delta V_{\text{GE(th)}}\!/\!\Delta \text{TJ}$	Threshold Voltage temp. coefficient	_	-12	_	mV/°C	$V_{CE} = V_{GE}, I_{C} = 1.0 \text{mA} (25^{\circ}\text{C} - 150^{\circ}\text{C})$
gfe	Forward Transconductance	_	30	_	S	$V_{CE} = 50V, I_{C} = 33A, PW = 20\mu s$
		_	_	250		$V_{GE} = 0V, V_{CE} = 1200V$
I _{CES}	Collector-to-Emitter Leakage Current	_	_	2.0	μΑ	V _{GE} = 0V, V _{CE} = 10V, T _J = 25°C
			_	1000		V _{GE} = 0V, V _{CE} = 1200V, T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	V _{GE} = ±20V

Switching Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Q _g	Total Gate Charge (turn-on)	_	151	227		I _C = 33A
Q_{ge}	Gate-to-Emitter Charge (turn-on)	_	26	39	nC	V _{GE} = 15V
Q _{gc}	Gate-to-Collector Charge (turn-on)	_	62	93		V _{CC} = 600V
E _{off}	Turn-Off Switching Loss	1	15	16	mJ	I_C = 33A, V_{CC} = 600V, V_{GE} = 15V R_G = 5Ω, L = 400μH, T_J = 25°C Energy losses include tail
t _{d(off)}	Turn-Off delay time	_	485	616	ns	$I_C = 33A$, $V_{CC} = 600V$, $V_{GE} = 15V$
tf	Fall time	_	1193	1371	115	$R_G = 5\Omega$, L = 400 μ H, $T_J = 25$ °C
E _{off}	Turn-Off Switching Loss	-	29	_	mJ	I_C = 33A, V_{CC} = 600V, V_{GE} = 15V R_G = 5Ω, L = 400μH, T_J = 25°C Energy losses include tail
t _{d(off)}	Turn-Off delay time	_	689	_		$I_C = 33A$, $V_{CC} = 600V$, $V_{GE} = 15V$
t _f	Fall time	_	2462	_	ns	$R_G = 5\Omega$, L = 400 μ H, $T_J = 25$ °C
Cies	Input Capacitance	_	3804	_		$V_{GE} = 0V$
Coes	Output Capacitance	_	161	_	pF	V _{CC} = 30V
C _{res}	Reverse Transfer Capacitance	_	31	_		f = 1.0Mhz
RBSOA	Reverse Bias Safe Operating Area	FUL	L SQUA	RE		$T_J = 150^{\circ}C$, $I_C = 99A$ $V_{CC} = 960V$, $V_P \le 1200V$ $Rg = 5\Omega$, $V_{GE} = +20V$ to $0V$

Notes

- ① V_{CC} = 80% (V_{CES}), V_{GE} = 20V, L = 400 μH , R_G = 50 Ω .
- $\ensuremath{{\mbox{$\mathbb Q$}}}$ Pulse width limited by max. junction temperature.
- $\ \, \mbox{\ \ \, }$ Refer to AN-1086 for guidelines for measuring $\mbox{\ \, V}_{\mbox{\tiny (BR)CES}}$ safely.
- $\ \, \mbox{ } \mbox$
- © Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 78A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.

Qualification Information[†]

		Automotive				
		(per AEC-Q101) ^{††}				
		Comments: This part number(s) passed Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.				
Moisture Sensitivity Level		3L-Super-TO-220	N/A			
	Mankina Manki	Class M4 (+/- 800 V)				
	Machine Model	(per AEC-Q101-002)				
	II B. I M. III	Class H3A (+/- 6000V)				
ESD	Human Body Model	(per AEC-Q101-001)				
		Class C5 (+/- 2000 V)				
Charged Device Model		(per AEC-Q101-005)				
RoHS Compliant		Yes				

[†] Qualification standards can be found at International Rectifier's web site: http://www.irf.com/

^{††} Highest passing voltage.

International TOR Rectifier

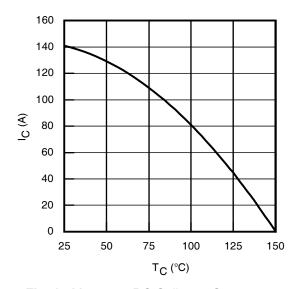
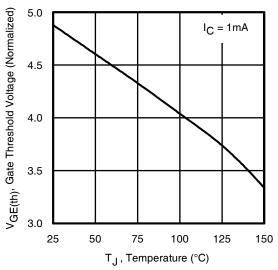



Fig. 1 - Maximum DC Collector Current vs.

Case Temperature

Fig. 3 - Typical Gate Threshold Voltage (Normalized) vs. Junction Temperature

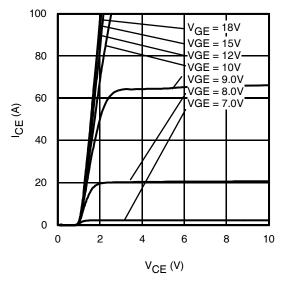
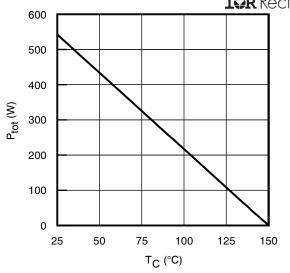



Fig. 5 - Typ. IGBT Output Characteristics $T_{,l} = -40^{\circ}\text{C}$; tp = 20µs

Fig. 2 - Power Dissipation vs. Case Temperature

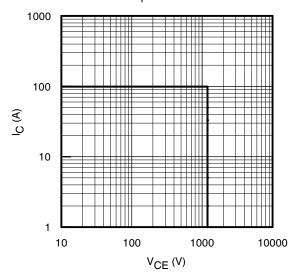


Fig. 4 - Reverse Bias SOA T_J = 150°C; V_{GE} = 20V

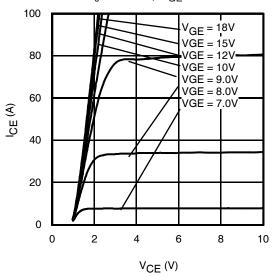


Fig. 6 - Typ. IGBT Output Characteristics $T_J = 25$ °C; tp = 20 μ s

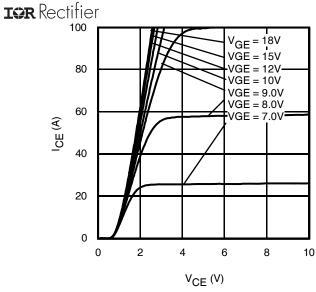


Fig. 7 - Typ. IGBT Output Characteristics $T_J = 150$ °C; $tp = 20\mu s$

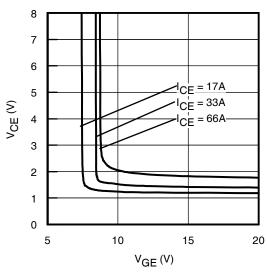


Fig. 9 - Typical V_{CE} vs. V_{GE} $T_J = 25^{\circ}C$

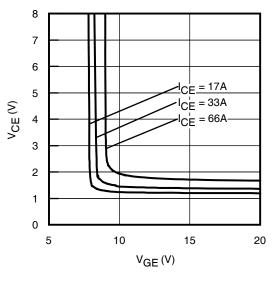


Fig. 8 - Typical V_{CE} vs. V_{GE} $T_J = -40$ °C

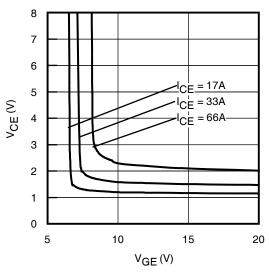


Fig. 10 - Typical V_{CE} vs. V_{GE} $T_J = 150^{\circ}C$

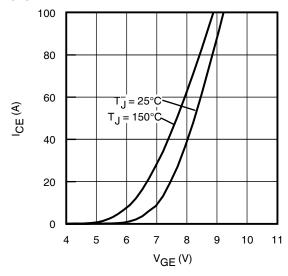


Fig. 11- Typ. Transfer Characteristics $V_{CE} = 50V$; $tp = 20\mu s$

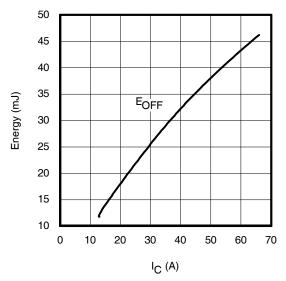
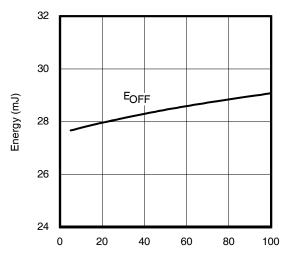



Fig. 12 - Typ. Energy Loss vs. I_C $T_J = 150^{\circ}\text{C}; \ L = 400 \mu\text{H}; \ V_{CE} = 600 \text{V}, \ R_G = 5\Omega; \ V_{GE} = 15 \text{V}$

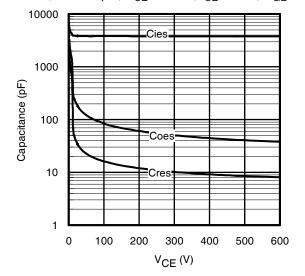


Fig. 16 - Typ. Capacitance vs. V_{CE} V_{GE} = 0V; f = 1MHz

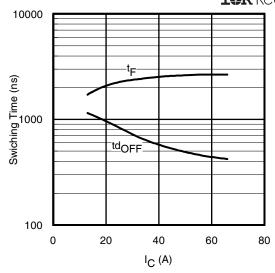


Fig. 13 - Typ. Switching Time vs. I_C T_J = 150°C; L = 400 μ H; V_{CE} = 600V, R_G = 5 Ω ; V_{GE} = 15V

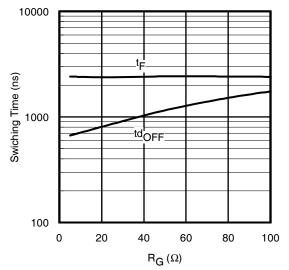


Fig. 15 - Typ. Switching Time vs. R_G $T_J = 150^{\circ}C$; $L = 400 \mu H$; $V_{CE} = 600 V$, $I_{CE} = 33 A$; $V_{GE} = 15 V$

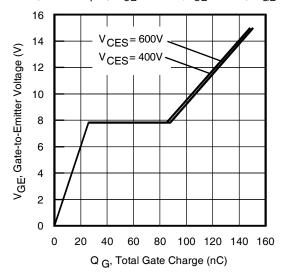


Fig. 17 - Typical Gate Charge vs. V_{GE} $I_{CE} = 33A$; L = 2.0mH

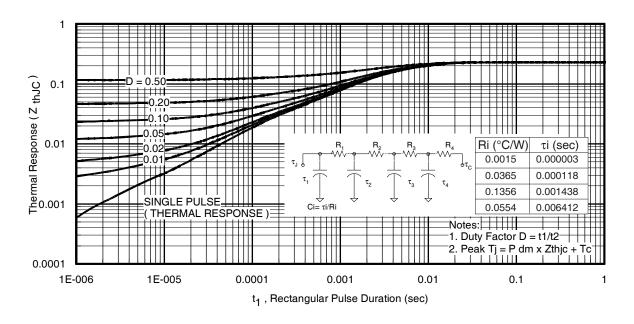


Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)

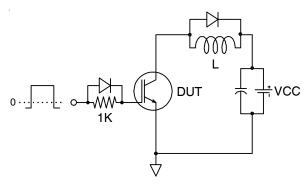


Fig.C.T.1 - Gate Charge Circuit (turn-off)

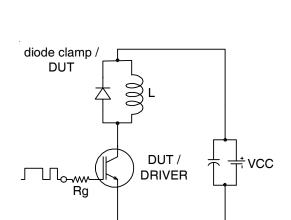


Fig.C.T.3 - Switching Loss Circuit

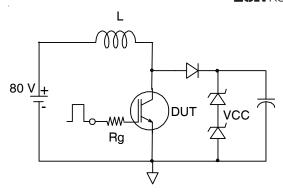


Fig.C.T.2 - RBSOA Circuit

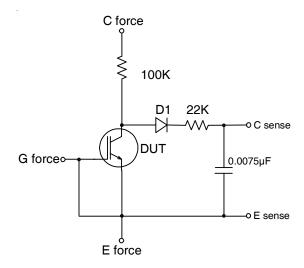


Fig.C.T.4 - BVCES Filter Circuit

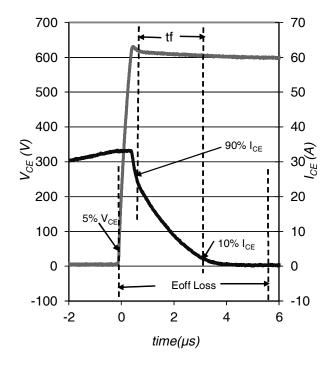
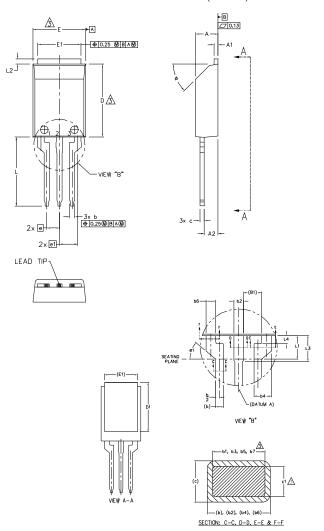



Fig. WF1 - Typ. Turn-off Loss Waveform $@T_J = 150^{\circ}\text{C}$ using Fig. CT.3

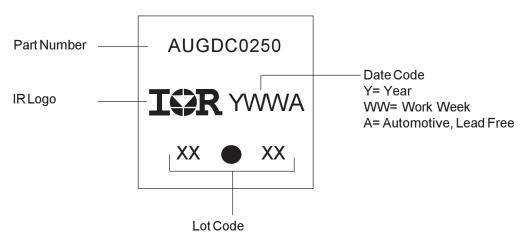
Super-TO-220 Package Outline

Dimensions are shown in millimeters (inches)

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS 61, 63, 65, 67 & c1 APPLY TO BASE METAL ONLY.
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTER EXTREMES OF THE PLASTIC BODY.
 - 4.- 62 AND 66 DO NOT INCLUDE MOLD FLASH,
 - 5.- (X.XX) MEANS REFERENCE DIMENSION.
 - 6.- ALL DIMENSIONS SHOWN IN MILLIMETERS.
 - 7.- CONTROLLING DIMENSION: MILLIMETER.
 - 8.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-273AA.

S Y	S Y DIMENSIONS				
M B	MILLIM	ETERS	INC	HES	O T
O L	MIN.	MIN. MAX.		MAX.	Ë
Α	4,34	4.74	,171	.187	
A1	0.50	1.00	.020	.039	
A2	2.50	3.00	.098	.118	
B1	(2.2)	-	(.087)	-	5
ь	0.90	1.30	.035	.051	
ь1	0.80	1.10	.031	.043	2
b2	1.25	1.65	.049	.065	4
b3	1.10	1.55	.043	.061	2
b4	2.35	2.55	.093	.100	
b5	2.30	2.50	.091	.098	2
b6	1.25	1.65	.049	.065	4
b7	1.10	1.55	.043	.061	2
С	0.70	1.00	.028	.039	
c1	0.60	0.90	.024	.035	2
D	14.00	15.00	.0551	.591	3
D1	12.50	13.50	.492	.531	
E	10.00	11.00	.394	.433	3
E1	8.00	9.00	.315	.354	
е	2.55	BSC	.100 BSC		
e1	3.66	BSC	.144	BSC	
L	13.00	14.50	.512	.571	
L1	3.00	3.50	.118	.138	
L2	0.50	1.50	.020	.059	
L3	3.50	4.00	.138	.157	
L4	-	1.50	-	.059	
ø	42.5*	47.5*	42.5*	47.5*	
ø1	-	42.5°	_	42.5°	

LEAD ASSIGNMENTS


MOSFET

- 1.- GATE
- 2.- DRAIN 3.- SOURCE
- 4.- DRAIN

<u>IGBT</u>

- 1.- GATE
- 2. COLLECTOR 3. EMITTER
- 4.- COLLECTOR

Super-TO-220 Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Ordering Information

Base part number	Package Type	Standard Pa	ack	Complete Part Number	
Base part number	1 ackage Type	Form	Quantity	complete i art Number	
AUIRGDC0250	Super-TO-220	Tube	50	AUIRGDC0250	

International

TOR Rectifier

AUIRGDC0250

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer's own risk and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center

http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

101 N. Sepulveda Blvd., El Segundo, California 90245

Tel: (310) 252-7105